Part Number Hot Search : 
IRFB4 AM2921DE ER07EED 2SD13 TJA1080A ON2036 2AX103V2 UE402
Product Description
Full Text Search
 

To Download RMPA5255 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 RMPA5255 4.9-5.9 GHz WLAN Linear Power Amplifier Module
September 2005
RMPA5255 4.9-5.9 GHz WLAN Linear Power Amplifier Module
Features
Full 4.9 to 5.9 GHz operation 34 dB small signal gain 230 mA total current at 18 dBm modulated power out 2.3% EVM at 18 dBm modulated power out 3.3 V collector supply voltage Integrated power detector with 20 dB dynamic range RoHS compliant 5 x 5 x 1.5 mm leadless package Internally matched to 50 and DC blocked RF input/output Internal DC bias de-coupling Optimized for use in 802.11a applications
Description
The RMPA5255 power amplifier module is designed for high performance WLAN applications in the 4.9-5.9 GHz frequency band. The 10 pin, 5 x 5 x 1.5 mm package with internal matching on both input and output to 50, and internal bias network components, allow for extremely simplified integration. An onchip detector provides power sensing capability. The PA's low power consumption and excellent linearity are achieved using our InGaP Heterojunction Bipolar Transistor (HBT) technology.
Device
Electrical Characteristics1 802.11a OFDM Modulation
(176 s burst time, 100 s idle time) 54 Mbps Data Rate, 16.7 MHz Bandwidth Parameter Min Typ
Frequency Collector Supply Voltage Mirror Supply Voltage Mirror Supply Current Gain Total Current @ 18dBm Pout EVM @ 18dBm Pout2 Detector Output @ 18dBm Pout Detector Threshold3 Notes: 1. VCC = 3.3V, VPC = 2.9V, TA = 25C, PA is constantly biased, 50 system. 2. Percentage includes system noise floor of EVM = 0.8%. 3. POUT measured at PIN corresponding to power detection threshold. 4.9 3.0 3.3 2.9 26 33 230 2.3 450 5
Max
5.9 3.6
Units
GHz V V mA dB mA % mV dBm
(c)2005 Fairchild Semiconductor Corporation
1
www.fairchildsemi.com
RMPA5255 Rev. E
RMPA5255 4.9-5.9 GHz WLAN Linear Power Amplifier Module
Electrical Characteristics1 Single Tone
Parameter
Frequency Supply Voltage (VCC) Power Control Voltage (VPC) Gain Total Quiescent Current Bias Current at pin VPC2 P1dB Compression Current @ P1dB Compression Shutdown Current (VPC = 0V) Input Return Loss Output Return Loss Detector Output at P1dB Compression Detector Pout Threshold4 Turn-On Time3
Min
4.9 3.0 2.6
Typ
3.3 2.9 33.5 160 26 26 508 <1.0 12 20 1.1 5 <1.0
Max
5.9 3.6 3.1
Units
GHz V V dB mA mA dBm mA A dB dB V V S
Notes: 1. VCC = 3.3V, VPC = 2.9V, TA = 25C, PA is constantly biased, 50 system. 2. Power Control bias current is included in the total quiescent current. 3. Measured from Device On signal turn on, (Logic Low) to the point where RF POUT stabilizes to 0.5dB. 4. POUT measured at PIN corresponding to power detection threshold.
Functional Block Diagram
PSense
N/C
10
GND
9
Voltage Detector
1
8
GND
RF IN
2
Input Match
Output Match
7
RF OUT
GND
3
Bias Control
6 5
VCC
GND
4
PC
2 RMPA5255 Rev. E
www.fairchildsemi.com
RMPA5255 4.9-5.9 GHz WLAN Linear Power Amplifier Module
Performance Data
802.11a OFDM Modulation
(176 ms burst time, 100 ms idle time) 54 Mbps Data Rate, 16.7 MHz Bandwidth
RMPA5255 EVM vs. Modulated Pout VCC=3.3V, VPC=2.9V, T=25C
8
35
RMPA5255 Gain vs. Modulated Pout VCC=3.3V, VPC=2.9V, T=25C
7
34
6
Total Measured EVM (%)
5
4
Gain (dB)
4.9 GHz 5.1 GHz 5.3 GHz 5.5 GHz 5.7 GHz 5.9 GHz
33
32 4.9 GHz 5.1 GHz 5.3 GHz 5.5 GHz 5.7 GHz 5.9 GHz
31
3
30
2
1
29
0 5
Note: Uncorrected EVM. Source EVM is approximately 0.8%.
28
10
15
20
25
5
10
15
20
25
30
Modulated Power Out (dBm)
Modulated Power Out (dBm)
RMPA5255 Total Current vs. Modulated Pout VCC=3.3V, VPC=2.9V, T=25C
400
RMPA5255 Detector Voltage vs. Modulated Pout VCC=3.3V, VPC=2.9V, T=25C
800
350
700
Itotal (mA)
300
4.9 GHz 5.1 GHz 5.3 GHz 5.5 GHz 5.7 GHz 5.9 GHz
Detector Voltage (mV)
600
4.9 GHz 5.1 GHz 5.3 GHz 5.5 GHz 5.7 GHz 5.9 GHz
250
500
200
400
150 5 10 15 20 25 30
300 5 10 15 20 25 30
Modulated Power Out (dBm)
Modulated Power Out (dBm)
Performance Data
Single Tone
RMPA5255 Gain vs. Single Tone Pout VCC=3.3V, VPC=2.9V, T=25C
36
35
RMPA5255 S-Parameters vs. Frequency VCC=3.3V, VPC=2.9V, T=25C
0
S21 (dB)
30
-5
34
25 -10
Gain (dB)
32
30
4.9 GHz 5.1 GHz 5.3 GHz 5.5 GHz 5.7 GHz 5.9 GHz
20
-15
S11 (dB)
15
S22 (dB)
-20
10
-25
28
5 -30
26 12 14 16 18 20 22 24 26 28
0 4.5 5 5.5 6 6.5
-35
Single Tone Power Out (dBm)
Frequency (GHz)
3 RMPA5255 Rev. E
www.fairchildsemi.com
S11, S22 (dB)
S21 (dB)
RMPA5255 4.9-5.9 GHz WLAN Linear Power Amplifier Module
Schematic
VDET (P-Sense)
10 9
1
8
RF IN
50
2
7 50 6
RF OUT
3
4
5
C1 220pF C2 0.01F C3 2.2F
Pin 1 2 3 4 5 6 7 8 9 10 11
Description GND RF IN GND VPC VCC GND RF OUT GND VDET (P-Sense) N/C CENTER GND
VPC
ZXYTT 5255
VCC
Package Outline
10 I/O 1 INDICATOR 1 8 9
ZXYTT 5255
TOP VIEW
2
7
5.00 0.10mm
NOTES: 1. PACKAGE BASE MATERIAL AND INTERCONNECT METALLIZATION: BT GRADE CCL-HL832, AuNiCu, Au 0.38 MICROMETERS MINIMUM. 2. SMT EXPOSURE: THIS DEVICE WILL WITHSTAND EXPOSURE TO TEMPERATURES OF 240C MAXIMUM FOR DWELL TIME OF 10 SECONDS MAXIMUM.
3
6
4 5 5.00 0.10mm
= EXPOSED METAL CONTACT PADS
FRONT VIEW
1.40 0.10mm
1.80 TYP. 0.70 TYP. 0.10 TYP. 1.70 TYP.
1.40 TYP. 0.60 TYP. 0.70 TYP.
0.40 TYP.
2
2.80 SQ.
Z 525 X Y T 5T
1 BOTTOM VIEW
1.10 TYP.
Dimensions in mm
4 RMPA5255 Rev. E
www.fairchildsemi.com
RMPA5255 4.9-5.9 GHz WLAN Linear Power Amplifier Module
Evaluation Board Bill of Materials
Evaluation Board Layout
Actual Board Size = 2.0" X 1.5"
Evaluation Board Turn-On Sequence1
Recommended turn-on sequence:
1) Connect common ground terminal to the Ground (GND) pin on the board. 2) Connect voltmeter to VDET (P-Sense). 3) Apply positive supply voltage (3.3 V) to pin VCC (Collector voltage). 4) Apply positive bias voltage (2.9 V) to pin VPC (Power Control voltage). 5) At this point, you should expect to observe the following positive currents flowing into the pins: Pin Current VCC 150 - 170 mA VPC 21 - 31 mA 6) Apply input RF power to SMA connector pin RFIN. Current for pin VCC will vary depending on the input drive level. 7) Vary positive voltage VPC from +2.9 V to +0 V to shut down the amplifier or alter the power level. Shut down current flow into the pins: Pin Current VCC <1 nA
Recommended turn-off sequence:
Use reverse order described in the turn-on sequence above.
Note: 1. Turn on sequence is not critical and it is not necessary to sequence power supplies in actual system level design.
5 RMPA5255 Rev. E
www.fairchildsemi.com
RMPA5255 4.9-5.9 GHz WLAN Linear Power Amplifier Module
Applications Information
CAUTION: THIS IS AN ESD SENSITIVE DEVICE. Precautions to Avoid Permanent Device Damage: * Cleanliness: Observe proper handling procedures to ensure clean devices and PCBs. Devices should remain in their original packaging until component placement to ensure no contamination or damage to RF, DC and ground contact areas. * Device Cleaning: Standard board cleaning techniques should not present device problems provided that the boards are properly dried to remove solvents or water residues. * Static Sensitivity: Follow ESD precautions to protect against ESD damage: - A properly grounded static-dissipative surface on which to place devices. - Static-dissipative floor or mat. - A properly grounded conductive wrist strap for each person to wear while handling devices. * General Handling: Handle the package on the top with a vacuum collet or along the edges with a sharp pair of bent tweezers. Avoiding damaging the RF, DC, and ground contacts on the package bottom. Do not apply excessive pressure to the top of the lid. * Device Storage: Devices are supplied in heat-sealed, moisture-barrier bags. In this condition, devices are protected and require no special storage conditions. Once the sealed bag has been opened, devices should be stored in a dry nitrogen environment. Device Usage: Fairchild recommends the following procedures prior to assembly. * Assemble the devices within 7 days of removal from the dry pack. * During the 7-day period, the devices must be stored in an environment of less than 60% relative humidity and a maximum temperature of 30C * If the 7-day period or the environmental conditions have been exceeded, then the dry-bake procedure, at 125C for 24 hours minimum, must be performed. Solder Materials & Temperature Profile: Reflow soldering is the preferred method of SMT attachment. Hand soldering is not recommended. Reflow Profile * Ramp-up: During this stage the solvents are evaporated from the solder paste. Care should be taken to prevent rapid oxidation (or paste slump) and solder bursts caused by violent solvent out-gassing. A maximum heating rate is 3C/sec. * Pre-heat/soak: The soak temperature stage serves two purposes; the flux is activated and the board and devices achieve a uniform temperature. The recommended soak condition is: 60-180 seconds at 150-200C. * Reflow Zone: If the temperature is too high, then devices may be damaged by mechanical stress due to thermal mismatch or there may be problems due to excessive solder oxidation. Excessive time at temperature can enhance the formation of inter-metallic compounds at the lead/board interface and may lead to early mechanical failure of the joint. Reflow must occur prior to the flux being completely driven off. The duration of peak reflow temperature should not exceed 20 seconds. Soldering temperatures should be in the range 255-260C, with a maximum limit of 260C. * Cooling Zone: Steep thermal gradients may give rise to excessive thermal shock. However, rapid cooling promotes a finer grain structure and a more crack-resistant solder joint. The illustration below indicates the recommended soldering profile. Solder Joint Characteristics: Proper operation of this device depends on a reliable void-free attachment of the heat sink to the PWB. The solder joint should be 95% void-free and be a consistent thickness. Rework Considerations: Rework of a device attached to a board is limited to reflow of the solder with a heat gun. The device should be subjected to no more than 15C above the solder melting temperature for no more than 5 seconds. No more than 2 rework operations should be performed.
Recommended Solder Reflow Profile
260
Ramp-Up R ate 3 C/sec max
Peak tem p 260 +0/-5 C 10 - 20 sec
Temperature (C)
217 200
Time above li quidus temp 60 - 150 sec
150
Preheat, 150 to 200 C 60 - 180 sec
100
Ramp-Up R ate 3 C/sec max
50 25
Time 25 C/sec t o peak tem p 6 mi nutes max
Ramp-Do wn Rate 6 C/sec max
Time (Sec)
6 RMPA5255 Rev. E
www.fairchildsemi.com
RMPA5255 4.9-5.9 GHz WLAN Linear Power Amplifier Module
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.
ACExTM FAST ActiveArrayTM FASTrTM BottomlessTM FPSTM Build it NowTM FRFETTM CoolFETTM GlobalOptoisolatorTM CROSSVOLTTM GTOTM DOMETM HiSeCTM EcoSPARKTM I2CTM E2CMOSTM i-LoTM EnSignaTM ImpliedDisconnectTM FACTTM IntelliMAXTM FACT Quiet SeriesTM Across the board. Around the world.TM The Power Franchise Programmable Active DroopTM
DISCLAIMER
ISOPLANARTM LittleFETTM MICROCOUPLERTM MicroFETTM MicroPakTM MICROWIRETM MSXTM MSXProTM OCXTM OCXProTM OPTOLOGIC OPTOPLANARTM PACMANTM POPTM Power247TM PowerEdgeTM
PowerSaverTM PowerTrench QFET QSTM QT OptoelectronicsTM Quiet SeriesTM RapidConfigureTM RapidConnectTM SerDesTM SILENT SWITCHER SMART STARTTM SPMTM StealthTM SuperFETTM SuperSOTTM-3 SuperSOTTM-6
SuperSOTTM-8 SyncFETTM TinyLogic TINYOPTOTM TruTranslationTM UHCTM UltraFET UniFETTM VCXTM WireTM
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 2. A critical component is any component of a life 1. Life support devices or systems are devices or support device or system whose failure to perform can systems which, (a) are intended for surgical implant into be reasonably expected to cause the failure of the life the body, or (b) support or sustain life, or (c) whose support device or system, or to affect its safety or failure to perform when properly used in accordance with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Advance Information Product Status Formative or In Design Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Preliminary
First Production
No Identification Needed
Full Production
Obsolete
Not In Production
This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
Rev. I16
7 RMPA5255 Rev. E
www.fairchildsemi.com


▲Up To Search▲   

 
Price & Availability of RMPA5255

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X